
Implementation of ALPHA: An Adaptive and Lightweight
Protocol for Hop-by-hop Authentication ∗

Johannes Gilger
RWTH Aachen University

Aachen, Germany
johannes.gilger@rwth-aachen.de

Florian Weingarten
RWTH Aachen University

Aachen, Germany
florian.weingarten@rwth-aachen.de

Tobias Heer
†

Distributed Systems Group,
RWTH Aachen University

Aachen, Germany
heer@cs.rwth-aachen.de

ABSTRACT
This paper describes our work on the Alpha protocol [3]
for the duration of our UROP project. Based on the origi-
nal Alpha paper, which purely specifies the basic algorith-
mic details of the protocol, we developed a fully functional
Alpha implementation for IP networks. In this process,
we significantly extended the functionality and behaviour
of the Alpha protocol. We begin with a short reminder
of the Alpha protocol before highlighting the key features
that we developed beyond the original ideas. At the end we
evaluate the maturity of the implementation by measuring
its performance.

Keywords
Mobile network, Authentication, Hop-by-Hop

1. INTRODUCTION
Alpha is a protocol to provide hop-wise authentication of

network packets on top of an already existing network. Al-
pha can be applied in a range of multi-hop networks. One
example are IP based networks. Alpha uses lightweight
cryptographically secure functions in the form of an inter-
active hash-chain based signature scheme [5] to provide au-
thentication of subsequent packets. To be flexible for dif-
ferent traffic patterns it also defines three different trans-
mission modes: Alpha-N sends each packet immediately
while Alpha-C / Alpha-M collect and send packets in
bursts. While the former is suited for low-latency and low-
throughput situations, the latter modes perform much bet-
ter in high-throughput scenarios by making a trade-off in
latency. The difference between them are different require-
ments in storage and computation.

As part of our UROP project, we implemented and consis-
tently documented a working prototype of the Alpha soft-
ware, which consists of software used by the clients as well as
a filter-program for the intermediate hop nodes called Al-
pha-filter. We developed the Alpha software from scratch.

2. FEATURES
In this section we describe the key features we imple-

mented in the Alpha software.

2.1 ALPHA modes
The three Alpha-modes provide flexibility in the scope of

use-scenarios for the Alpha software. The Alpha software
is supposed to work for a wide range of devices and networks.
Using the different modes separately or even in combination
provides the user with the possibility to adapt the protocol
to his needs.

The different modes for sending packets (Alpha-M, Alpha-
N, Alpha-C) were explained in detail in [3], so there was

∗This research was supported by the Undergraduate Re-
search Opportunities Programme (UROP Offer 182) of
RWTH Aachen University and was completed in 02/2010.
†Coordinator for the UROP-project

no ambiguity when implementing them. We wanted to work
with the different modes easily, that is why we abstracted
the methods called directly as much as possible. This way,
the caller does not have to deal with the (implementation-
specific) differences between the modes.

2.2 Associations
While the Alpha-modes already provide some level of

flexibility (low-latency with Alpha-N vs. high-bandwidth
with Alpha-M, Alpha-C) by themselves, it became ap-
parent that only being able to send data on a single pre-
determined channel with a fixed Alpha-mode per peer was
a serious limitation. When using the burst-modes for high-
volume traffic, small packets used for signaling were being
sent with the rest of the data stream instead of being pri-
oritized. We suspected this behaviour to result in decreased
performance. Furthermore, the symmetry of this single con-
nection meant that each side had to generate and store the
same amount of hash-chain elements, even if the expected
traffic flow was mostly uni-directional, thus depleting the
signature chain on the sender more quickly and wasting pre-
computed hash-chain elements. And lastly, because of the
inherent latency of Alpha, the daemon always had to wait
a full round-trip before actually sending the packet.

To address these issues we introduced associations, which
form different communication channels between two peers,
roughly speaking. These associations share common princi-
ples with the ones found in the IPsec protocol[4]: they have
an ID and a type, and a lookup method is used to map an
incoming packet to an actual association in the local mem-
ory. We decided to use uni-directional channels to adapt
to typical asymmetrical bandwidth requirements. Since the
actual network interface can only send one packet at a time
we had to devise a scheduler which first distributed outgo-
ing packets to the available outgoing associations, and then
made sure that the resulting packet queues stored at these
associations were processed in a fair manner. A small ex-
ample of two Alpha clients which send and receive packets
on two different associations is given in Fig. 1. Here, the
first element of the tuple identifies the association while the
second entry signals the packet type.

C

C

S

S

S1

A1

S2

(a) α

C

C

S

S

(5,S1)

(3,S1)

(3,A1)

(5,A1)

(b) α Ass.

Figure 1: Regular ALPHA and ALPHA with two
associations

C

C

S

S

CONNECT(A1)

CHALLENGE(h(R, A1, TS))

SYN(CHALLENGE, Anchors_A1, DSA(Anchors_A1))

ACK(Anchors_A2, DSA(Anchors_A2))

ACKACK(Anchors_A1-1)

Figure 2: Complete ALPHA handshake

Since neither the mode nor the number of required asso-
ciations is known to either side before connecting, we also
needed a flexible mechanism not only for creating new as-
sociations, but also for signaling the end of existing associ-
ation. We decided that the best way to achieve this was to
designate a special Alpha association, which we called the
control association (similar to the two phases in the IPsec
protocol). The control association has the unique property
of being bi-directional. It is used for signaling requests be-
tween the Alpha hosts when a hash-chain is depleted and
a new association has to be established.

2.3 Authenticated anchors
The original paper mentioned the need for guaranteeing

the authenticity of the initial hash chain anchors sent by
both parties. To that end it suggested, amongst other meth-
ods, the use of public-key cryptographic systems. We chose
to use the Digital Signature Algorithm (DSA) in order to
sign and verify the initial anchors during connection. This
allows us to provide a secure exchange of hash anchors, while
fulfilling the requirement for Alpha-filters to be able to read
and store the anchors during the exchange.

The next step was to design a simple handshake proce-
dure for establishing a connection. We used the SYN, ACK,
ACKACK terminology to denominate the first three pack-
ets sent. Denial of service (DoS) attacks based on exhaust-
ing the resources of a node were a realistic concern during
the design. Storing data received with the first packet from
an unknown peer meant that a sufficiently large number of
forged connection attempts could result in the node running
out of free memory or in a serious slowdown due to a large
number of hash-chain computations.

To counter this attack, we preceded the handshake by a
return-routability check that does not involve storing infor-
mation on the server before the return-address of a client has
been verified. This is the same concept as the cookies used
during the IPsec Internet Key Exchange (IKE)[2]. When a
client connects, the server responds with a challenge, which
he generates using a secret random number, a timestamp
and the client’s claimed address. The client has to return
this challenge with the SYN packet, which is also used to
send the client’s hash anchors to the server. The server can
now verify that the client received the challenge and did not
supply a false IP address. Only if the information is correct,
a state for the client is created and the actual handshake
continues. The server adds the client to its list of peers,
stores the hash-chain anchors it received, generates its own
hash-chains and replies using an ACK packet. The client
replies with the final ACKACK-packet to signal the com-
pletion of the handshake. The packets carrying the anchors
are signed (using DSA) by the peers, enabling the other side
to verify that the data has not been tampered with during
transmission and that the packet has not be received by an
impersonator. A sequence-chart showing the packets sent
during connection is given in Fig. 2.

2.4 Storage-strategies for hash-chains

One of the main objectives of Alpha was to stay flexible
with regard to different classes of devices. While computing
hash chains can be seen as the lowest common denominator
those devices need to match, being able to store the com-
plete hash-chains is a not a mandatory requirement. The
authors did not mention any strategies to be able to trade
storage space for computing time, but we came up with an
intermediate storage format which would only store every
n-th element of the hash-chain and computing intermediate
entries as needed. We were able to verify the validity of our
approach when we discovered [6].

2.5 ALPHA configuration
While developing Alpha we gradually enhanced the fron-

tend for supplying options to the (running) Alpha daemon.
We implemented support for a small and simple configura-
tion file which not only holds system-wide parameters but
also the settings for each individual peer known in advance.
Most of the options can also be specified using command-
line switches to the Alpha daemon, where they will override
previous directives read from a configuration file. We differ-
entiated between options that an end-user will be able to set
and switches solely meant for the development of Alpha.

For controlling a local Alpha daemon and getting status
information, a small program, called alphacontrol, was cre-
ated. It communicates with the Alpha daemon using BSD
sockets.

2.6 Platform compatibility
During development, we focused on the Linux operating

system for both client and filter-software. Because of our
own experience and the simple demand for performance, we
chose the C programming language to implement both parts
of the software. Another factor contributing to that choice
was the necessity to easily manipulate data on a low abstrac-
tion level and to be able to directly use the libc in order to
maintain platform compatibility.

Ensuring platform compatibility turned out to be one of
the biggest problems we faced. Traditional VPN-solutions
use a designated tunnel destination to send their packets to,
so they can simply add an extra route for just that desti-
nation to be contacted directly, while the rest of the traffic
has to pass through the VPN-software first. The software
encapsulates the packets in a new packet to the tunnel des-
tination, i.e. it will not pass through the software again.
Alpha presents a different situation since the tunnel desti-
nation is the same host to be contacted using Alpha. We
therefore had to devise a method for traffic to only pass
through the Alpha daemon once. This is pictured in Fig.
3: An outbound packet P arrives at the routing table which
sends it to the Alpha daemon. There it is encapsulated in
an Alpha packet and sent to the routing table again, which
will now send it directly to the network, i.e. the remote peer.

Linux enabled us to direct the traffic based on firewall-
marks. Those marks are attached to packets by the net-
filter[1] architecture and we simply marked all non-Alpha
packets. The second step was to tell the routing algorithm
that those marked packets should use a different routing ta-

Network

134.130.78.0/24
134.130.78.2/24
134.130.78.3/24
134.130.78.4/24
134.130.78.5/24
134.130.78.6/24
134.130.78.7/24
134.130.78.8/24
134.130.78.9/24

α
P P

α(P)

α(P)

Figure 3: ALPHA routing situation

ble, one that lead through the tunnel interface controlled by
the Alpha daemon first. This method required minor or no
modifications to existing systems.

Mac OS X, lacking the netfilter architecture, employs its
own version of the UNIX ipfw firewall. After several failed
attempts to set up a similar path, we put the OS X support
on hold to focus on one architecture. We made sure that
every version of Alpha still compiled and ran on Mac OS
X, including the daemon and the virtual network interface.

3. ORGANIZATIONAL CHALLENGES
Alpha, as proposed in [3], is only described as a set of core

ideas for the protocol, which are the correctness and evalua-
tion of the different Alpha modes. Not mentioned are more
specific details when it comes to the data-structures and
authentication-schemes to be employed and the behaviour
to show in the face of failures and unexpected requests. The
lack of a strict specification meant that we had to discuss
new features and details with our UROP-coordinator fre-
quently. It was also the opportunity for us to show him
new improvements we had devised or point out problems
not anticipated by the original paper.

4. EVALUATION
For evaluating the efficiency of the Alpha-prototype we

performed a range of measurements. We used a setup of
dedicated machines to avoid any side effects by concurrent
processes or network traffic. The setup consisted of two
(resp. three) identical machines: AMD Athlon X2 4800+
processor, 3GB RAM, RTL8111 NIC, connected to an iso-
lated GBit switch. The machines ran a 32bit Linux kernel
(version 2.6.28). Throughput was measured with the iperf
tool, using a simple uni-directional stream of bulk data from
the client/sender to the server/receiver. Each single test was
run seven times for a duration of 30s each and the results
were averaged. Latency was introduced using traffic control
(tc) of the Linux kernel. The Alpha-daemon on the client
was restarted after each test, the daemon on the server side
ran continuously with 30 Alpha-N associations to send data.

The same measurements were also performed with an in-
termediate node running the Alpha-filter software and the
results were similar, yet less smooth, which is why we chose
the plots resulting from a direct connection here.

4.1 Plain throughput
The first thing we were interested in was the impact of Al-

pha on the maximum transmission rate (bandwidth) with
an increasing number of associations. Results of this test-
run can be seen in Fig. 4. Discarding the initial step from
one to two associations, it is obvious that without a delay,
Alpha does not benefit from using more than a few asso-
ciations. Worse yet, the overhead for storing and accessing
the different associations increases with a rising number of

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0 5 10 15 20 25 30 35

A
ve

ra
ge

 b
an

dw
id

th
 in

 k
bi

t/s

Number of associations

ALPHA-N
ALPHA-C
ALPHA-M

Figure 4: Bandwidth without delay

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 5 10 15 20 25 30 35

A
ve

ra
ge

 b
an

dw
id

th
 in

 k
bi

t/s

Number of associations

ALPHA-N
ALPHA-C
ALPHA-M

Figure 5: Bandwidth with 10ms delay

associations, reducing overall performance.

4.2 Impact of latency
We also wanted to show how the transmission rate be-

haved for different Alpha-modes when we introduced an
artificial delay (latency) between the nodes. The expected
results were that the two bulk modes, Alpha-C and Alpha-
M, would handle the delay better than Alpha-N when com-
pared to the respective test runs without delay. We also as-
sumed that for the delayed test run, increasing the number
of associations up to a certain number would have a posi-
tive effect on bandwidth, regardless of mode. The results of
this run are given in Fig. 5. The impact of increasing num-
bers of associations can clearly be seen and behaves linearly
for Alpha-N. Alpha-M bandwidth stays nearly constant,
pointing to possible inefficiencies in the handling of Alpha-
M associations in the Alpha-client.

5. CONCLUSION
While the measurements we performed point to some per-

formance bottlenecks yet to address in the Alpha prototype,
they were a good indicator of the benefit of associations.
Using multiple associations meant an improvement of band-
width in the face of latency. We learned that the optimal
number of associations depends on the network latency as
well as the resources of the nodes running Alpha. An intel-
ligent scheduler together with different combinations of as-
sociations should improve the performance noticeably and
would be the next logical step in the development of the
Alpha-prototype.

In the course of this project we learned how to succesfully
implement, document, test and improve a stable prototype
for the Alpha-protocol, while at the same time working on
the protocol itself.

6. REFERENCES
[1] http://www.netfilter.org/.

[2] D. Harkins and D. Carrel. The Internet Key Exchange
(IKE). RFC 2409 (Proposed Standard), Nov. 1998.
Obsoleted by RFC 4306, updated by RFC 4109.

[3] T. Heer, S. Götz, O. Garcia Morchon, and K. Wehrle.
Alpha: An adaptive and lightweight protocol for
hop-by-hop authentication. In Fourth Conference on
emerging Networking EXperiments and Technologies,
CoNEXT 2008, Madrid, Spain, 2008. ACM.

[4] S. Kent and K. Seo. Security Architecture for the
Internet Protocol. RFC 4301 (Proposed Standard),
Dec. 2005.

[5] L. Lamport. Password authentication with insecure
communication. Communications of the ACM,
24(11):772, 1981.

[6] Y. Sella. On the computation-storage trade-offs of Hash
chain traversal. Lecture notes in computer science,
50(2):270–285.

